3.1356 \(\int \frac{\csc (c+d x) \sec ^4(c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=194 \[ -\frac{2 b^5 \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a d \left (a^2-b^2\right )^{5/2}}+\frac{b \sec ^3(c+d x) (b-a \sin (c+d x))}{3 a d \left (a^2-b^2\right )}-\frac{b \sec (c+d x) \left (a \left (2 a^2-5 b^2\right ) \sin (c+d x)+3 b^3\right )}{3 a d \left (a^2-b^2\right )^2}+\frac{\sec ^3(c+d x)}{3 a d}+\frac{\sec (c+d x)}{a d}-\frac{\tanh ^{-1}(\cos (c+d x))}{a d} \]

[Out]

(-2*b^5*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a*(a^2 - b^2)^(5/2)*d) - ArcTanh[Cos[c + d*x]]/(a*d
) + Sec[c + d*x]/(a*d) + Sec[c + d*x]^3/(3*a*d) + (b*Sec[c + d*x]^3*(b - a*Sin[c + d*x]))/(3*a*(a^2 - b^2)*d)
- (b*Sec[c + d*x]*(3*b^3 + a*(2*a^2 - 5*b^2)*Sin[c + d*x]))/(3*a*(a^2 - b^2)^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.408696, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 10, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.37, Rules used = {2898, 2622, 302, 207, 2696, 2866, 12, 2660, 618, 204} \[ -\frac{2 b^5 \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a d \left (a^2-b^2\right )^{5/2}}+\frac{b \sec ^3(c+d x) (b-a \sin (c+d x))}{3 a d \left (a^2-b^2\right )}-\frac{b \sec (c+d x) \left (a \left (2 a^2-5 b^2\right ) \sin (c+d x)+3 b^3\right )}{3 a d \left (a^2-b^2\right )^2}+\frac{\sec ^3(c+d x)}{3 a d}+\frac{\sec (c+d x)}{a d}-\frac{\tanh ^{-1}(\cos (c+d x))}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(Csc[c + d*x]*Sec[c + d*x]^4)/(a + b*Sin[c + d*x]),x]

[Out]

(-2*b^5*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a*(a^2 - b^2)^(5/2)*d) - ArcTanh[Cos[c + d*x]]/(a*d
) + Sec[c + d*x]/(a*d) + Sec[c + d*x]^3/(3*a*d) + (b*Sec[c + d*x]^3*(b - a*Sin[c + d*x]))/(3*a*(a^2 - b^2)*d)
- (b*Sec[c + d*x]*(3*b^3 + a*(2*a^2 - 5*b^2)*Sin[c + d*x]))/(3*a*(a^2 - b^2)^2*d)

Rule 2898

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])
, x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b,
e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/2, 0])

Rule 2622

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 302

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 2696

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[((g*Co
s[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b - a*Sin[e + f*x]))/(f*g*(a^2 - b^2)*(p + 1)), x] + Dist[1/
(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m*(a^2*(p + 2) - b^2*(m + p + 2)
+ a*b*(m + p + 3)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] &&
IntegersQ[2*m, 2*p]

Rule 2866

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[((g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c - a*d - (a*c -
b*d)*Sin[e + f*x]))/(f*g*(a^2 - b^2)*(p + 1)), x] + Dist[1/(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p
+ 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\csc (c+d x) \sec ^4(c+d x)}{a+b \sin (c+d x)} \, dx &=\int \left (\frac{\csc (c+d x) \sec ^4(c+d x)}{a}-\frac{b \sec ^4(c+d x)}{a (a+b \sin (c+d x))}\right ) \, dx\\ &=\frac{\int \csc (c+d x) \sec ^4(c+d x) \, dx}{a}-\frac{b \int \frac{\sec ^4(c+d x)}{a+b \sin (c+d x)} \, dx}{a}\\ &=\frac{b \sec ^3(c+d x) (b-a \sin (c+d x))}{3 a \left (a^2-b^2\right ) d}+\frac{b \int \frac{\sec ^2(c+d x) \left (-2 a^2+3 b^2-2 a b \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{3 a \left (a^2-b^2\right )}+\frac{\operatorname{Subst}\left (\int \frac{x^4}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a d}\\ &=\frac{b \sec ^3(c+d x) (b-a \sin (c+d x))}{3 a \left (a^2-b^2\right ) d}-\frac{b \sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 a \left (a^2-b^2\right )^2 d}-\frac{b \int \frac{3 b^4}{a+b \sin (c+d x)} \, dx}{3 a \left (a^2-b^2\right )^2}+\frac{\operatorname{Subst}\left (\int \left (1+x^2+\frac{1}{-1+x^2}\right ) \, dx,x,\sec (c+d x)\right )}{a d}\\ &=\frac{\sec (c+d x)}{a d}+\frac{\sec ^3(c+d x)}{3 a d}+\frac{b \sec ^3(c+d x) (b-a \sin (c+d x))}{3 a \left (a^2-b^2\right ) d}-\frac{b \sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 a \left (a^2-b^2\right )^2 d}-\frac{b^5 \int \frac{1}{a+b \sin (c+d x)} \, dx}{a \left (a^2-b^2\right )^2}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a d}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{a d}+\frac{\sec (c+d x)}{a d}+\frac{\sec ^3(c+d x)}{3 a d}+\frac{b \sec ^3(c+d x) (b-a \sin (c+d x))}{3 a \left (a^2-b^2\right ) d}-\frac{b \sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 a \left (a^2-b^2\right )^2 d}-\frac{\left (2 b^5\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a \left (a^2-b^2\right )^2 d}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{a d}+\frac{\sec (c+d x)}{a d}+\frac{\sec ^3(c+d x)}{3 a d}+\frac{b \sec ^3(c+d x) (b-a \sin (c+d x))}{3 a \left (a^2-b^2\right ) d}-\frac{b \sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 a \left (a^2-b^2\right )^2 d}+\frac{\left (4 b^5\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{a \left (a^2-b^2\right )^2 d}\\ &=-\frac{2 b^5 \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{a \left (a^2-b^2\right )^{5/2} d}-\frac{\tanh ^{-1}(\cos (c+d x))}{a d}+\frac{\sec (c+d x)}{a d}+\frac{\sec ^3(c+d x)}{3 a d}+\frac{b \sec ^3(c+d x) (b-a \sin (c+d x))}{3 a \left (a^2-b^2\right ) d}-\frac{b \sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 a \left (a^2-b^2\right )^2 d}\\ \end{align*}

Mathematica [A]  time = 4.84422, size = 334, normalized size = 1.72 \[ \frac{-\frac{24 b^5 \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a \left (a^2-b^2\right )^{5/2}}+\frac{2 (7 a+10 b) \sin \left (\frac{1}{2} (c+d x)\right )}{(a+b)^2 \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )}+\frac{2 \sin \left (\frac{1}{2} (c+d x)\right )}{(a+b) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^3}+\frac{2 (10 b-7 a) \sin \left (\frac{1}{2} (c+d x)\right )}{(a-b)^2 \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}+\frac{1}{(a+b) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^2}+\frac{1}{(a-b) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^2}-\frac{2 \sin \left (\frac{1}{2} (c+d x)\right )}{(a-b) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3}+\frac{12 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{a}-\frac{12 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{a}}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Csc[c + d*x]*Sec[c + d*x]^4)/(a + b*Sin[c + d*x]),x]

[Out]

((-24*b^5*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a*(a^2 - b^2)^(5/2)) - (12*Log[Cos[(c + d*x)/2]])
/a + (12*Log[Sin[(c + d*x)/2]])/a + 1/((a + b)*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2) + (2*Sin[(c + d*x)/2])
/((a + b)*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^3) + (2*(7*a + 10*b)*Sin[(c + d*x)/2])/((a + b)^2*(Cos[(c + d*
x)/2] - Sin[(c + d*x)/2])) - (2*Sin[(c + d*x)/2])/((a - b)*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3) + 1/((a -
b)*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2) + (2*(-7*a + 10*b)*Sin[(c + d*x)/2])/((a - b)^2*(Cos[(c + d*x)/2]
+ Sin[(c + d*x)/2])))/(12*d)

________________________________________________________________________________________

Maple [A]  time = 0.118, size = 279, normalized size = 1.4 \begin{align*} -{\frac{1}{3\,d \left ( a+b \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-3}}-{\frac{1}{2\,d \left ( a+b \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}-{\frac{3\,a}{2\,d \left ( a+b \right ) ^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-2\,{\frac{b}{d \left ( a+b \right ) ^{2} \left ( \tan \left ( 1/2\,dx+c/2 \right ) -1 \right ) }}-2\,{\frac{{b}^{5}}{d \left ( a-b \right ) ^{2} \left ( a+b \right ) ^{2}a\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }-{\frac{1}{2\,d \left ( a-b \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}+{\frac{1}{3\,d \left ( a-b \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-3}}+{\frac{3\,a}{2\,d \left ( a-b \right ) ^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-2\,{\frac{b}{d \left ( a-b \right ) ^{2} \left ( \tan \left ( 1/2\,dx+c/2 \right ) +1 \right ) }}+{\frac{1}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)*sec(d*x+c)^4/(a+b*sin(d*x+c)),x)

[Out]

-1/3/d/(a+b)/(tan(1/2*d*x+1/2*c)-1)^3-1/2/d/(a+b)/(tan(1/2*d*x+1/2*c)-1)^2-3/2/d/(a+b)^2/(tan(1/2*d*x+1/2*c)-1
)*a-2/d/(a+b)^2/(tan(1/2*d*x+1/2*c)-1)*b-2/d*b^5/(a-b)^2/(a+b)^2/a/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x
+1/2*c)+2*b)/(a^2-b^2)^(1/2))-1/2/d/(a-b)/(tan(1/2*d*x+1/2*c)+1)^2+1/3/d/(a-b)/(tan(1/2*d*x+1/2*c)+1)^3+3/2/d/
(a-b)^2/(tan(1/2*d*x+1/2*c)+1)*a-2/d/(a-b)^2/(tan(1/2*d*x+1/2*c)+1)*b+1/d/a*ln(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)*sec(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 5.34558, size = 1546, normalized size = 7.97 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)*sec(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

[-1/6*(3*sqrt(-a^2 + b^2)*b^5*cos(d*x + c)^3*log(-((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b
^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x +
c) - a^2 - b^2)) - 2*a^6 + 4*a^4*b^2 - 2*a^2*b^4 + 3*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*cos(d*x + c)^3*log(1/
2*cos(d*x + c) + 1/2) - 3*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*cos(d*x + c)^3*log(-1/2*cos(d*x + c) + 1/2) - 6*
(a^6 - 3*a^4*b^2 + 2*a^2*b^4)*cos(d*x + c)^2 + 2*(a^5*b - 2*a^3*b^3 + a*b^5 + (2*a^5*b - 7*a^3*b^3 + 5*a*b^5)*
cos(d*x + c)^2)*sin(d*x + c))/((a^7 - 3*a^5*b^2 + 3*a^3*b^4 - a*b^6)*d*cos(d*x + c)^3), 1/6*(6*sqrt(a^2 - b^2)
*b^5*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c)))*cos(d*x + c)^3 + 2*a^6 - 4*a^4*b^2 + 2*a^2*b
^4 - 3*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*cos(d*x + c)^3*log(1/2*cos(d*x + c) + 1/2) + 3*(a^6 - 3*a^4*b^2 + 3
*a^2*b^4 - b^6)*cos(d*x + c)^3*log(-1/2*cos(d*x + c) + 1/2) + 6*(a^6 - 3*a^4*b^2 + 2*a^2*b^4)*cos(d*x + c)^2 -
 2*(a^5*b - 2*a^3*b^3 + a*b^5 + (2*a^5*b - 7*a^3*b^3 + 5*a*b^5)*cos(d*x + c)^2)*sin(d*x + c))/((a^7 - 3*a^5*b^
2 + 3*a^3*b^4 - a*b^6)*d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)*sec(d*x+c)**4/(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.21228, size = 416, normalized size = 2.14 \begin{align*} -\frac{\frac{6 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )} b^{5}}{{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} \sqrt{a^{2} - b^{2}}} - \frac{3 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a} - \frac{2 \,{\left (3 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 6 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 6 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 9 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 2 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 8 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 6 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 3 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 6 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 4 \, a^{3} + 7 \, a b^{2}\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3}}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)*sec(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/3*(6*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))*b^5/(
(a^5 - 2*a^3*b^2 + a*b^4)*sqrt(a^2 - b^2)) - 3*log(abs(tan(1/2*d*x + 1/2*c)))/a - 2*(3*a^2*b*tan(1/2*d*x + 1/2
*c)^5 - 6*b^3*tan(1/2*d*x + 1/2*c)^5 - 6*a^3*tan(1/2*d*x + 1/2*c)^4 + 9*a*b^2*tan(1/2*d*x + 1/2*c)^4 - 2*a^2*b
*tan(1/2*d*x + 1/2*c)^3 + 8*b^3*tan(1/2*d*x + 1/2*c)^3 + 6*a^3*tan(1/2*d*x + 1/2*c)^2 - 12*a*b^2*tan(1/2*d*x +
 1/2*c)^2 + 3*a^2*b*tan(1/2*d*x + 1/2*c) - 6*b^3*tan(1/2*d*x + 1/2*c) - 4*a^3 + 7*a*b^2)/((a^4 - 2*a^2*b^2 + b
^4)*(tan(1/2*d*x + 1/2*c)^2 - 1)^3))/d